Mikroben im Bienenstock
Verfasst: Do 23. Sep 2010, 12:08
http://www.biomedcentral.com/content/pd ... 85-6-4.pdf
Antagonistic interactions between honey bee bacterial symbionts and implications for disease
Jay D Evans* and Tamieka-Nicole Armstrong
Im Darm der Bienenlarve:
Acinetobacter
Bacillus (41 Spezies)
B. cereus
B. thuringiensis
B. fusiformis
B. flexus
B. mycoides
B. niabensis
Brevibacillus
Br. formosus
Br. centrosporus
Br. brevis
Stenotrophomonas
Stenotrophomonas maltophilia
Mehr Mikroben je älter die Larve:
7-day-old larvae than from one-day larvae
(28 of 55 larvae at 7 days, 28 of 306 larvae at 24 hr, G test,p < 0.0001; Table 2)
Acinetobacter johnsonii
Moraxella osloensis
Pseudomonas aeruginosa
Buchnera aphidicola
Haemophilus aegyptius
Pasteurella aerogenes
Serratia sp
Xenorhabdus nematophila
Ruminal bacterium
Salmonella bovis
Klebsiella pneumoniae
Serratia marcescens
Vibrio cholerae
Shewanella putrefaciens
Bordetella avium
Taylorella equigenitalis
Burkholderia tropicalis
Kingella denitrificans
Thiobacillus aquaesulis
Thiobacillus thioparus
Apis Simonsiella sp
Xylella fastidiosa
Rhodanobacter lindaniclasticus
Thiothrix nivea
Beggiatoa alba
Thioploca ingrica
Legionella parisiensis
Thermophilic methanotroph
Solemya occidentalis
Apis Gluconacetobacter sp
Agrobacterium tumefaciens
Rhizobium etli
Apis Bartonella sp
Sinorhizobium xinjiangensis
Bradyrhizobium japonicum
Xanthobacter autotrophicus
Balastochloris sulfoviridis
Caulobacter crescentus
Sphingomonas aromaticivorans
Anaplasma ovis
Bacteroides forsythus
Prevotella buccalis
Helicobacter pylori
Thiomicrospira denitrificans
Geobacter grbicium
Stigmatella aurantiaca
Apis Lactobacillus sp
Lactobacillus plantarum
Weissella kimchii
Enterococcus faecalis
Enterococcus faecium
Lactococcus lactis
Streptococcus mutans
Streptococcus oralis
Streptococcus pneumoniae
Bacillus amyloliquefaciens
Bacillus subtilis
Bacillus pumilus
Bacillus permians
Bacillus pseudofirmus
Bacillus clausii
Bacillus coagulans
Bacillus thermoleovorans
Thermoactinomyces candidus
Bacillus anthracis
Bacillus thuringiensis
Bacillus megaterium
Bacillus sphaericus
Bacillus tipchiralis
Paenibacillus lentimorbus
Paenibacillus popilliae
Bacillus vortex
Brevibacillus agri
Fusobacterium necrophorum
Mycoplasma bovis
Sarcina ventriculi
Borrelia burgdorferi
Treponema denticola
Spirochaeta bajacaliforniensis
Thermothrix thiopara
Rubrobacter radiotolerans
Clostridium indolis
Syntrophomonas saporvorans
Apis Bifidobacterium sp
Bifidobacterium cantenulatum
Bifidobacterium thermacidophilum
Corynebacterium diphtheriae
Corynebacterium glutamicum
Nocardia fluminea
Streptosporangiaceae str
Streptomyces scabies
Perhaps, as is apparent in the termites and ants [24,25], honey bees have evolved behavioral or physiological
mechanisms to enhance the transmission of beneficial microbes, while battling those species which are patho-
genic. This would indicate a delicate balancing act for bees and other social insects, allowing for the encouragement
of beneficial species while maintaining barriers against exploitation by pathogens. If so, discrimination at the lev-
els of behavior and individual immune responses might be used to bias the microbial biome within insect colonies
toward mutualists and against parasites and pathogens.
### ##### ########
http://ddr.nal.usda.gov/dspace/bitstrea ... 213044.pdf
The number of different bacteria and the overall population
size varied with the type of nectar the bees were collecting.
Because of the activity of microbes, bee bread differs in chemical composition from the pollen bees collect. In fact, certain compounds such as Vitamin K and lactic acids are found only in bee bread.
The cellular response involves the production of antibodies. The role of symbiotic microbes in the biochemical pathways that ultimatel y lead to the formation of antibodies is not known. At the least though, nutrition plays a role in providing the basic building blocks of the proteins needed to create antibodies. The amino acids used in the proteins are derived from pollen whose digestion is largely mediated by symbiotic microbes.
Antagonistic interactions between honey bee bacterial symbionts and implications for disease
Jay D Evans* and Tamieka-Nicole Armstrong
Im Darm der Bienenlarve:
Acinetobacter
Bacillus (41 Spezies)
B. cereus
B. thuringiensis
B. fusiformis
B. flexus
B. mycoides
B. niabensis
Brevibacillus
Br. formosus
Br. centrosporus
Br. brevis
Stenotrophomonas
Stenotrophomonas maltophilia
Mehr Mikroben je älter die Larve:
7-day-old larvae than from one-day larvae
(28 of 55 larvae at 7 days, 28 of 306 larvae at 24 hr, G test,p < 0.0001; Table 2)
Acinetobacter johnsonii
Moraxella osloensis
Pseudomonas aeruginosa
Buchnera aphidicola
Haemophilus aegyptius
Pasteurella aerogenes
Serratia sp
Xenorhabdus nematophila
Ruminal bacterium
Salmonella bovis
Klebsiella pneumoniae
Serratia marcescens
Vibrio cholerae
Shewanella putrefaciens
Bordetella avium
Taylorella equigenitalis
Burkholderia tropicalis
Kingella denitrificans
Thiobacillus aquaesulis
Thiobacillus thioparus
Apis Simonsiella sp
Xylella fastidiosa
Rhodanobacter lindaniclasticus
Thiothrix nivea
Beggiatoa alba
Thioploca ingrica
Legionella parisiensis
Thermophilic methanotroph
Solemya occidentalis
Apis Gluconacetobacter sp
Agrobacterium tumefaciens
Rhizobium etli
Apis Bartonella sp
Sinorhizobium xinjiangensis
Bradyrhizobium japonicum
Xanthobacter autotrophicus
Balastochloris sulfoviridis
Caulobacter crescentus
Sphingomonas aromaticivorans
Anaplasma ovis
Bacteroides forsythus
Prevotella buccalis
Helicobacter pylori
Thiomicrospira denitrificans
Geobacter grbicium
Stigmatella aurantiaca
Apis Lactobacillus sp
Lactobacillus plantarum
Weissella kimchii
Enterococcus faecalis
Enterococcus faecium
Lactococcus lactis
Streptococcus mutans
Streptococcus oralis
Streptococcus pneumoniae
Bacillus amyloliquefaciens
Bacillus subtilis
Bacillus pumilus
Bacillus permians
Bacillus pseudofirmus
Bacillus clausii
Bacillus coagulans
Bacillus thermoleovorans
Thermoactinomyces candidus
Bacillus anthracis
Bacillus thuringiensis
Bacillus megaterium
Bacillus sphaericus
Bacillus tipchiralis
Paenibacillus lentimorbus
Paenibacillus popilliae
Bacillus vortex
Brevibacillus agri
Fusobacterium necrophorum
Mycoplasma bovis
Sarcina ventriculi
Borrelia burgdorferi
Treponema denticola
Spirochaeta bajacaliforniensis
Thermothrix thiopara
Rubrobacter radiotolerans
Clostridium indolis
Syntrophomonas saporvorans
Apis Bifidobacterium sp
Bifidobacterium cantenulatum
Bifidobacterium thermacidophilum
Corynebacterium diphtheriae
Corynebacterium glutamicum
Nocardia fluminea
Streptosporangiaceae str
Streptomyces scabies
Perhaps, as is apparent in the termites and ants [24,25], honey bees have evolved behavioral or physiological
mechanisms to enhance the transmission of beneficial microbes, while battling those species which are patho-
genic. This would indicate a delicate balancing act for bees and other social insects, allowing for the encouragement
of beneficial species while maintaining barriers against exploitation by pathogens. If so, discrimination at the lev-
els of behavior and individual immune responses might be used to bias the microbial biome within insect colonies
toward mutualists and against parasites and pathogens.
### ##### ########
http://ddr.nal.usda.gov/dspace/bitstrea ... 213044.pdf
The number of different bacteria and the overall population
size varied with the type of nectar the bees were collecting.
Because of the activity of microbes, bee bread differs in chemical composition from the pollen bees collect. In fact, certain compounds such as Vitamin K and lactic acids are found only in bee bread.
The cellular response involves the production of antibodies. The role of symbiotic microbes in the biochemical pathways that ultimatel y lead to the formation of antibodies is not known. At the least though, nutrition plays a role in providing the basic building blocks of the proteins needed to create antibodies. The amino acids used in the proteins are derived from pollen whose digestion is largely mediated by symbiotic microbes.